Search results

1 – 4 of 4
Article
Publication date: 3 July 2017

Bachir Bendjedia, Nassim Rizoug, Moussa Boukhnifer and Farid Bouchafaa

The purpose of this paper is to propose and compare two energy management strategies (EMSs). First, a classic method based on frequency separation with fixed limits on fuel cell…

Abstract

Purpose

The purpose of this paper is to propose and compare two energy management strategies (EMSs). First, a classic method based on frequency separation with fixed limits on fuel cell (FC) power is presented and tested. Then, the improvement of the classic strategy is developed and implemented when the main enhancements are its ease of implementation, hydrogen economy and extending hybrid source lifetime.

Design/methodology/approach

The proposed EMS is developed using an online variable power limitation of the FC depending on the battery state of charge while ensuring that the energy of batteries remains in its operating depth of discharge (DOD) range.

Findings

In the objective to show the benefits of the developed strategy, a comparative analysis was conducted between two strategies. The simulation and experimental results show the effectiveness and gains obtained by the improved energy management system (IEMS) in terms of fuel economy (13 per cent) and decreasing the applied stress on the FC (22 per cent) which leads to a longer life span of the whole system.

Originality/value

The proposed approach is developed and tested by simulation. To confirm it, a test bench has been assembled as hardware in the loop (HIL) real-time system. The presented experimental results confirm the efficiency and show the providing gains of the IEMS.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 3 July 2017

Yosra Rkhissi-Kammoun, Jawhar Ghommam, Moussa Boukhnifer and Faiçal Mnif

This paper aims to address the speed and flux tracking problem of an induction motor (IM) drive that propels an electric vehicle (EV). A new continuous control law is developed…

Abstract

Purpose

This paper aims to address the speed and flux tracking problem of an induction motor (IM) drive that propels an electric vehicle (EV). A new continuous control law is developed for an IM drive by using the backstepping design associated with the Robust Integral Sign of the Error (RISE) technique.

Design/methodology/approach

First, the rotor field-oriented IM dynamic model is derived. Then, a RISE-backstepping approach is proposed to compensate for the load torque disturbance under the assumptions that the disturbances are C2 class functions with bounded time derivatives.

Findings

The numerical validation results have presented good control performances in terms of speed and flux reference tracking. It is also robust against load disturbances rejection and IM parameters variation compared to the conventional Field-Oriented Control design. Besides, the asymptotic stability and the boundedness of the closed-loop signals is guaranteed in the context of Lyapunov.

Originality/value

A very relevant strategy based on a conjunction of the backstepping design with the RISE technique is proposed for an IM drive. The approach remains simple and can be scaled to different applications.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 September 2016

Moussa Boukhnifer, Nadir Ouddah, Toufik Azib and Ahmed Chaibet

The purpose of this paper is to propose two energy management strategies (EMS) for hybrid electric vehicle, the power system is an hybrid architecture (fuel cell (FC)/battery…

Abstract

Purpose

The purpose of this paper is to propose two energy management strategies (EMS) for hybrid electric vehicle, the power system is an hybrid architecture (fuel cell (FC)/battery) with two-converters parallel configuration.

Design/methodology/approach

First, the authors present the EMS uses a power frequency splitting to allow a natural frequency decomposition of the power loads and second the EMS uses the optimal control theory, based on the Pontryagin’s minimum principle.

Findings

Thanks to the optimal approach, the control objectives will be easily achieved: hydrogen consumption is minimized and FC health is protected.

Originality/value

The simulation results show the effectiveness of the control strategy using optimal control theory in term of improvement of the fuel consumption based on a comparison analysis between the two strategies.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 35 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 17 March 2016

Alaa Chabir, Moussa Boukhnifer, yassine bouteraa, ahmed chaibet and jawhar ghommam

This work focuses on modelling, robust controller design and real time control of 3-DOF Helicopter.

Abstract

Purpose

This work focuses on modelling, robust controller design and real time control of 3-DOF Helicopter.

Design/methodology/approach

This study presents an improved H∞ controller for this aerial vehicle

Findings

Simulation and experiment results are addressed to demonstrate the capability of this proposed control strategy to counteract the effect of this disturbance

Originality/value

In order to reduce the complexity of the standard H∞ structure, a fixed order control design is proposed as original approach

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 35 no. 3
Type: Research Article
ISSN: 0332-1649

1 – 4 of 4